
Pramuditha Muhammad Ikhwan 

Shaping Ideas Through Code,
Curiosity, and Continuity 

iOS Developer  

Highlighted Projects from 2025 

Pramuditha Muhammad Ikhwan 
iOS Developer 

Educational Background  Professional Background 

Apple Developer Academy @ Infinite Learning 

Universitas Negeri Yogyakarta 

Learner Cohort 6 
Feb 2025 - Dec 2025 

Majoring in Information Technology  
Aug 2021 - May 2025 

4TITU PTE LTD 
Full Stack Developer 
Aug 2025 - Present 

Apple Developer Academy @ Infinite Learning 
iOS Developer  
Feb 2025 - Dec 2025 

PT Widya Inovasi Indonesia 
System Analyst 
Aug 2023 - Dec 2023 

A growth-minded iOS developer
passionate about turning real-world
challenges into intuitive digital
experiences. 

Bangkit Academy 
Mobile Development Cohort 
Sep 2024 - Jan 2025 

Selected Works as
iOS Developer. 

Building SLNG: My
Journey to Craft a
Fast, Native, Playful
App 

SLNG 
An app to help foreign students understand
informal Indonesian 

Foreign students struggle to understand the meaning and
social context of Indonesian slang and slang evolves
quickly, which makes it hard for them to keep up. 
 
From a developer’s perspective,
the interesting problem wasn’t just
the slang itself—it was how to
design an iOS experience that
handles unpredictable,
fast-moving language gracefully. 

PROBLEM STATEMENT 

Foreign students struggle to grasp
meaning + social context, not just
words. 

Solving the Real Problem 

Many foreign students could recognize Indonesian slang, but
not the intention behind it. Meaning shifts with tone, sentiment,
and social context. One word can change entirely depending on
how it’s used. 
 
I built SLNG’s data model to capture that
nuance. Each slang has contextual variants,
sentiment labels, and bilingual examples,
paired with a matching algorithm that
handles spelling variations and tone
alignment. This lets SLNG detect not just the
slang, but the meaning in that moment,
making translations far more intuitive. 

Designing a translator that captures
nuance, not just definitions. 

Instead of adding more features, I focused on what actually
helps users interpret meaning in real conversations. 
 
SLNG is built around multiple entry points,
including the main app, a custom keyboard,
and a system-wide Share Extension, ensuring
slang can be understood wherever it appears. 

Building Features That Actually Matter 

Avoiding a flat UX by playing with
motion, sounds, and haptics. 

Making the Experience Feel Alive 

SLNG needed a personality, something more expressive than
a static dictionary UI. I shaped the experience with motion,
sound, and haptics to match the lively nature of slang. 
 
Interactions use fluid spring animations,
subtle haptic cues, and light audio touches
that make actions feel tactile without
becoming gimmicky. Everything follows
iOS-native principles: responsive,
intentional, and lightweight. The goal wasn’t
visual noise, but an experience that feels
expressive and genuinely fun to use. 

Each round of testing reshaped flow,
interactions, and stability. 

Iterating Based on Real Feedback 

SLNG evolved through fast iterations shaped by
real user behavior. While testers noted minor
inconsistencies in gestures and transitions, a
key insight came from foreign students who
often heard slang without knowing how to spell
it. This led to the addition of Speech-to-Text
and a refined input flow for real-world voice
conversations. 

Migrating to Go to halve response
times and stabilize concurrency. 

Rewriting the Backend for Speed 

As usage scaled, backend latency became a clear bottleneck. The
initial Node.js prototype worked for early validation, but it struggled
with consistent response times under concurrency. 
 
Rather than patching around the problem, I
rebuilt the backend in Go. The migration enabled
lightweight routing, stronger concurrency
handling, and more efficient memory usage.
Average response times dropped from ~3
seconds to ~1.5 seconds, effectively cutting
latency in half. 
 
This wasn’t just an engineering improvement. The faster backend
translated directly into a more fluid, responsive, and reliable user
experience. 

Tracing Real User Behavior with
Firebase Analytics 

Tracing User Behavior 

To inform future product decisions, I used
Firebase Analytics to trace which features users
actively engaged with. Feature-level usage data
revealed where users found real value, allowing
me to prioritize iterations and focus
development effort on areas that mattered most. 

Tech Stack of SLNG 

Swift Data  AVFoundation  OpenAI API  Apple Speech 

Building Paintee:
Crafting Face-Aware
AR Experiences from
First Principles 

Paintee 
An app to help beginner doing face painting who
find it difficult to create proportional and
symmetrical face painting 

Beginner who apply face painting on their own faces
often struggle with proportion and symmetry, especially
when working from references on a flat surface. 
 
Looking at it through a builder’s
lens, the interesting problem
wasn’t painting itself—it was how
to design an experience that
understands facial structure and
guides precision in real time. 

PROBLEM STATEMENT 

Crafting Navigation Around a
Continuous AR Session 

Crafting Seamless Navigation 

Face painting is a continuous, hands-on activity, not a sequence
of screens. Every interruption breaks focus, muscle memory,
and spatial alignment.  
 
In Paintee, navigation had to respect the
session itself. Instead of resetting context at
every step, the app preserves a single,
continuous AR session while guiding users
through structured phases—previewing,
dotting, outlining, and painting. Screens
change, but the session doesn’t. This
approach turns navigation into session
control, allowing beginners to stay grounded
in the same physical space while progressing
with confidence and precision. 

Voice Control as a First-Class
Interaction 

Enhancing Accessibility 

During face painting, hands are already busy and attention is
split between a mirror, the brush, and facial precision. Asking
users to constantly tap buttons or navigate UI breaks focus at
the exact moment it matters most.  
 
By allowing users to move between steps,
toggle guidance, and progress through the
experience using voice, the app removes
unnecessary touch interactions. This lets
users stay focused on applying the paint
itself, keeping their hands, posture, and
attention anchored to the task instead of the
screen. 

Nothing Extra Between the User and
the Task 

Paintee is structured as a single, linear session rather than a collection of screens. From design preview to guided
application and finally capturing the result, each step advances the same underlying state instead of creating a new context.
The AR session stays alive while the UI layers shift just enough to guide the next action. This keeps navigation lightweight
and predictable, avoids unnecessary resets, and preserves spatial alignment throughout the process. By treating the
experience as one continuous flow, the app removes friction from the interface and lets users stay focused on the physical
act of face painting. 

Tech Stack of Paintee 

RealityKit  SwiftUI  Vision  ARKit 

Beyond the Case
Studies. 

Built by curiosity. Proven by shipping. 

linkedin.com/in/ikhwanpramuditha/ 

+62 812 4701 6022 

github.com/prammmoe 

medium.com/@prammmoe 

Open to iOS developer and engineering roles 

